The ACeDB Object Oriented Database Query Language.

D. Thierry-Mieg
J. Thierry-Mieg

National Center for Biotechnology Information,

National Library of Medicine, National Institutes of Health,
8600 Rockville Pike, Bethesda MD20894, USA.

E-mail: mieg@ncbi.nlm.nih.gov

Abstract

Acedb is an object oriented database system, originally developed to support the C.elegans
then the human genome project and now maintained at the NCBI. It is well adapted to manage
and analyze millions of objects with rich but incomplete information and enjoys native support
for DNA and proteins. This document presents a renewed query language for acedb, reminiscent
of SQL, with a ’select from where’ structure, but adapted to the structure of an object oriented
schema. Notable features include a semantic alphanumeric ordering such that unc-32 comes
before unc-116; strict and loose date comparisons such that 2018-04 is strictly smaller but loosely
equal to 2018-04-03; a natural implementation of transitive closure and multivalued data-cells;
special support for DNA and Protein queries; and a careful treatment of the extension of Boolean
logic to multi-valued variables and missing data. We define the language, show on examples
how to construct progressively more complex queries and use shortcuts to facilitate querying the
database in interactive sessions. The whole database system is open-source and freely available
at ftp://ftp.ncbinlm.nih.gov/acedb/ACeDB_NCBI

Contents

B T TEpT— T —

3.2 Regular exr)ressionq A

Automa assification ng_dynaim DClasSses

/ ombining Boolean conditions: AND, OR, XOR and NOT

B.5 Dealing with wissing data: TRUE, FALSE NULL and NaN
(3.6 The meaning of NOT in a multiv i | s

|4_B_a,sj,g‘_data tvped

4.2 T.oose and strict date comparisons, date differenced

4.3 DNA and proteins, motif searched
5 Column titles and row order

[A_Anney

11
11
12
12
13
13
14
15

15
15
16
17

18

19

W N

1 Introduction

Acedb [1] is an object oriented database which can manipulate complex objects defined as structured
trees, with leaves composed of tags, numbers, dates, object references, texts, as well as DNA and
protein sequences. The grammar is simple, but powerful, and since the onset of the genome project
the system played a central role in part thanks to its powerful graphic interface, and in part
because the acedb data structure is very easy to interface with any scripting language, greatly
facilitating the work of data curators [3]. A rich example is provided by the AceView web site
https://www.aceview.org where an acedb server holds all the data and generates all the graphic
displays of an integrative annotation of the human, mouse, rat and worm genomes, extending from
the molecular support of each gene in each tissue to phenotypes, diseases and bibliography [7] .
The purpose of this document is to present a new version of the query language which is at the
same time clear, terse and powerful. While maintaining backwards compatibility, it overcomes the
limitations of the previous versions and elegantly captures the particularities of an object oriented
database design. As such, parts of the present design could be advantageously applied to other
object oriented systems.

2 Presentation of the Query language

2.1 Overview

The first aim of our query language is to allow the systematic exploration of the database by the
construction of large tables that can join the data contained in families of objects, subject to textual
and arithmetic filtering. In other words, the query language allows to give a relational view of our
object oriented database. The syntax of a complex query is reminiscent of SQL, it takes the form

select x, z from x in ..., y in ..., z in ... where order

In SQL, the variables would iterate through tables. In an object oriented database, the first
variable x typically iterates across all the members of a given class, then y is derived from x, then
z is derived from x and/or y. The resulting (z,y, z) tuples are filtered by the where condition.
Finally, only the (z,z) columns specified in the select clause, with lines sorted according to the
order clause, are exported. The resulting syntax is very natural because in our normal life, we are
more accustomed to reason about objects than about relations. For example, the meaning of the
rather complex query

select A, P // select 2 variables: A and P
from A in class Person, // A scans the whole class Person
P in A—>papers // P scans the papers of A

where count { A—>papers } >=5 // limit to at least 5 papers

D Ut R W N =

[S

should not be too difficult to grasp. In this first query, the variable A iterates across all members
of class Person, the variable P through all the papers of each author and finally only the authors
having at least 5 papers are selected.

Calculations can be performed on numerical values:

select p, bmi // Report persons with high body mass index
from p in class Person, // p scans all persons
h in p—>height, // h is the height in meters
w in p—>weight, // w is the weight in kilograms
bmi =w / h"2 // bodymass index in kg/m"2
where bmi > 25 // select overweight persons

In this second query, using the classical definition of the bodymass index, we select people who are
heavy relative to their height. The intermediate variables A and w are not exported, but if they
are not available in the database, the bmi will not be computed. By combining more variables, and
using arithmetic and {} protected embedded subqueries, as in these examples, one can construct
large tables which remain relatively easy to develop and maintain. The details on the exploration
of the database are explained in section 2, the where clause in sections 3, the dates, DNA and
protein formats in sections 4, ordering in section 5.

The second aim of the query language is to allow to express very simple things in a very simple
way, as in the following examples

Find author // list all members of class author

select Kx // limit to names starting with K

follow papers // list their papers

select 7Person kx ; >papers // idem on a single line

select 7sequence kinesinx ; DNA // export a set of DNA sequences

The simplifications (detailed in section 2.5) are obtained in two ways. On the one hand, the
queries are implicitly chained, either by being issued in succession, or by being separated by a
semi-column. This allow to write only very short query pieces and try them one after the other.
On the other hand, the computer is in charge of interpolating the syntactic sugar. For example,
the computer expands the second line select Kx into select p from p in Q where p like 'K+,
where @ (the active set) refers to the results of the previous query. The short form contains all the
information but is simpler, easier to grasp, easier to type, and less prone to clerical mistakes.

The details of the implementatin of the query language within the acedb system are described
in the annex. The lists of all the keywords is presented in A.1. The history of the development is
summarized in A.2. The way to download, compile and test the latest version of acedb is explained
in A.3. A complete interactive query session is detailled in A.4. Finally annex A.5 presents the
C-language API used in client programs.

© oo ~ o v - W L) -

-
f=}

© W N O s W N

T T N T = T T o S ~ S S O SO
N R O © X N O O A W N = O

23
24

1

2.2 Introduction to the acedb schema

In acedb, each object belongs to a class, with a known schema defined in the file wspec/models.wrm.

A simple schema for a bibliography database can be

?Paper Title UNIQUE 7 Text // Class Text is
Author ?Person XREF Papers // by default,

Journal UNIQUE Text // except if UNIQUE
Submitted UNIQUE DateType // Dates have a special

Published UNIQUE DateType //

Pages Int UNIQUE Int // several linked values are allowed

?Person Papers ?Paper XREF Author // XREF maintains the
Affiliation Text // Multivalued by default
present or

Professor // Boolean tag,

searchable
tags are multivalued
specified

A few instances of these classes can be

Person Tom
Professor
Papers pl // Tom has published several papers
p2
Affiliation Paris
Tokyo

Person Jim
Papers pl
Affiliation London

Paper pl

Title "Quantum computers’
Author Tom

Jim
Journal "Nature”
Published 2001-04
Submitted 2000-11
Pages 1 23

100 107

i

Paper p2
Author Jim
Published 2004—-06
Pages 17 19

A simple biometric and filiation schema can be specified as

?Person Filiation Parent 7?Person XREF Child

(SIS I N

W N

1

Brother 7Person XREF Brother
Child ?Person XREF Parent
Biometrics Height UNIQUE Float // Height in meters
Weight UNIQUE Float // Weight in kilograms

The cross referencings (XREF) in the schema guarantee that the author/paper, the parent/child
and the brother/brother relations remain synchronized.

2.3 Navigating through the acedb schema

As explained previously, one can list all existing papers using

select 7Paper

resulting in a 1 column table

pl
p2

We can get to a tag using #, and get the value behind a tag using —>. For example the following
query

select p in ?Paper, a in p—>Author,prof in a#Professor, z in a—>Affiliation

will produce the 4 column table

pl Jim NULL London
pl Tom Professor Paris
pl Tom Professor Tokyo
p2 Jim NULL London

Reporting the pages creates a new challenge. According to the schema, the pages tag supports
a two columns table of integers. To access the two columns, one must use square brackets.

select P in ?Paper, pl in P—pages, p2 in pl[l] where p2

or the equivalent query, in which p sits on the pages tag of the object

select P,pl,p2 from P in ?Paper,p in P#pages,pl in p[l],p2 in p[2] where p2

or the equivalent query, in which the bracket is associated directly to the tag name

select P,pl,p2 from P in ?Paper,pl in P—>pages[1l],p2 in P—>Pages[2] where p2

In each case, one obtains

pl 1 23
pl 100 107
p2 17 19

s W NN =

gt W N

Several details in the second form of the query should be noticed. a) The variable names are
case sensitive, p and P are distinct. b) In principle p[2] should iterate through each number in
column 2 behind p

select P, last page’',p2 from P in ?Paper,p in P#pages,p2 in p[2] where p2

gives

pl last page 23
pl last page 107
p2 last page 19

but when we have 2 bracketings of the same variable, they remain synchronized so p[l] and p[2]
always refer to the same line of the table behind the tag pages. This synchronization is very
important when a tag is multivalued. Consider a schema where each chromosome contains the
position of all its genes

Chromosome chr_18
Gene A 1000 2000
Gene B 4000 6000

The 3 equivalent queries

select c,g,al,a2 from c in ?chromosome,g in c—>Gene,al in g[l],a2 in g[2]
select c,g,al,a2 from c in ?chromosome,g in c—>Gene,al in g[l],a2 in al[l]
select ¢ in ?chromosome, g in c—>Gene, al in g[l], a2 in al[l]

gives the expected answer, with one line per gene, with the correct coordinates

chr_18 A 1000 2000
chr_18 B 4000 6000

because on each line the coordinates al and a2 are derived from, and therefore are associated to,
the gene g. But if we write the following more complex query where we reinitialize the definition
of the 2 coordinates al, a2 at the root of the object

select ¢, g, al, a2
from ¢ in ?chromosome,
g in c—>Gene, al in c—>Gene[2], a2 in c—>Gene[3]

al, a2 are no longer associated to the variable g and we obtain the silly combinatorial answer

chr_18 A 1000 2000
chr_18 A 1000 6000
chr_18 A 4000 2000
chr_18 A 4000 6000
chr_18 B 1000 2000

chr_18 B 1000 6000
chr_18 B 4000 2000
chr_18 B 4000 6000

© 00 N O U e W N =

N g s W N =

~ (=] ot - W N —

2.4 Multi-valued data cells and transitive closure

In an object oriented database, tags are often multivalued. As already explained, the expand
operator — > gives access to the values behind a tag, one value per line. But in a table with several
columns, if several tags are developed, this leads to a combinatorial number of lines. Suppose tagl
has 4 values and tag2 has 6 values, the query select Q—> tagl, Q—> tag2 would give 24 lines. To
limit this proliferation, it is sometimes more convenient to export all the values in a single data
cell. The parallel-expand operator => provides this possibility.

// => gives the parallel expansion, unsorted
// The results appear in the same order as in the object

// as desired when

listing the authors of a paper

select 7paper pl; =>author

Tom; Jim // all

// Genealogy example

select m,

Eva is the mother

authors come on a single line

is the mother of ', m=>child from m in ?Person where m =— eva

of Cain; Abel; Seth

Another modification is the transitive-expand operator >> which gives the transitive closure
of a tag, meaning that the >> operator is used iteratively. For example grand-ma — > child lists
all the direct children of grand_ma, but grand_-ma >> child gives her children, grand-children,
great-grand-children ... For example, if the first two biblical generations are known in the database

select p, '"is a parent of’', from p in 7Person, c in p—>child where ¢
Enosh is a parent of Baraki
Enosh is a parent of Keman
Eva is a parent of Abel
Eva is a parent of Cain
Eva is a parent of Seth
Seth is a parent of Enosh

The whole progeny of Eva is given by the child transitive closure

select ?Person Eva

Abel
Baraki
Cain
Enosh
Keman
Seth

; @ >> child // whole progeny

U e W N =

2.5 Simplification rules

The most frequent way to define the first variable is to iterate through a class. To list all members
of the class sequence known in the database, one may write

select x from x in class "sequence” // full syntax, or equivalently
select x in class "sequence” // drop from since x is exported
select x in class sequence // drop the quotes

select class sequence // drop the name of the variable
select 7sequence // use 7 as a shortcut for class

find sequence // intuitive equivalent syntax

The successive short cuts are all acceptable, because the original syntactic sugar was not bringing
any information. First, the purpose of the select ... from ... syntax is to export only some
of the arguments that are needed to compute, or to order, the exported columns in a specific
way. If all columns should be exported the ’.... from ’ clause is no longer needed. Then, the
doubles quotes around the class names are optional, as class names in acedb never contain spaces
or non alphanumeric characters. The variable name x is redundant since x was not reused. The
very frequent keyword class can be abbreviated as a leading question mark. Finally find, at the
beginning of a query, is used as an alias of select class. The general idea is to allow the most
concise syntax and remap it into a full query which is executed by the database.

Suppose we want to find all the members of class Person called King. Again this name does
not contain any blank space, so starting from the full syntax, we can write any of the following
equivalent queries

select x from x in class "Person” where x like "king” // full syntax
select 7?Person like "king" // drop x and the where keyword

When the variable is not named, everything to the right of the class name is interpreted as
being part of the where clause. One can replace the like by ~ (tilde), or replace it by one of the
usual comparators < <= == > >

select 7?Person < kj // select Abel to King, but not Kong

Finally, if there is nothing else in the query we can eliminate the operator symbol

select ?Person King // which is interpreted as
select a in ?Person where (a#King or a like "King”)

we select at the same time the persons named 'King’ or containing the tag King, In most situations,
this is not ambiguous but using this simplified syntax to select a person with the meaningful name
King may also select the current King of the kingdom !

The double quotes are not always needed. Indeed the comparison operators expect a declared
variable, a number or a string on the right hand side. We do need to protect strings containing
spaces or special characters, like slash or minus. We must also protect strings matching the reserved

D s W N =

word, i.e. "select”, "from” or strings matching the name of the declared variables, or tag names
like in the previous example distinguishing the name ”king” and the tag King. Attention, variable
names are case sensitive, x and X are distinct, but reserved words (select, Select, SELECT) are
not. Consider these 2 examples

select x in ?Person, y in x—>Brother where y > x // x is a variable
select x in ?Person, y in x—>Brother where y > "x" // "x" is letter x

The first query will select pairs of persons (z,y) where the name of brother y if alphabetically
behind the name of brother x, for example (Abel, Cain), but not (Cain, Abel). Whereas the
second query requests that y starts with x, y or z and would accept (Zachary, Xavier), but reject
(Abel, Seth).

There is a special issue concerning the naming of the instances of a class. By default the
instance names are not case sensitive, but the firt typography encountered when parsing the data
is always preserved. For example if in the datafiles the first spelling is ” Eva”, then the query
Find person eva will return Eva. However, one may specify in acedb that the instance names
of a particular class are case sentitive, this is specified in the self documnented configuration file
wspec/options.wrm. This option is used for example in the class Gene for the model organism
Drosophila melanogaster which, according to tradition, has two distinct genes, one called A and
the other called a.

Finallly, on the command line, the leading keyword select can be abbreviated as s,

select ?Person kx // full form
s ?Person kx /] s is a short form for select

All these shortcuts allow to type quickly terse queries on the command line interface, which are
first mapped in a well defined way into a full fledged query language, then evaluated.

2.6 Chaining queries using the active list

The second most frequent way to derive the first variable of a query is to iterate through the active
list. This concept was inspired by the Unix pipe. The active list is called @. It is a mathematical
set, always sorted, and with no duplicates. It starts empty. It is then populated or modified by
each successive select statement. This allows to chain the queries like in:

select a from a in class "Person” // populate the active list @
select a from a in @ where a like "king” // derive a from the list

// which can be simplified into:
find person
select king

If a query exports several columns, the active list corresponds to the first exported column. For
example

10

s W NN =

1

select p, j from p in class paper, j in p—>journal // case PJ
select ?paper, >journal // equivalent short form of case PJ
select j, p from p in class paper, j in p—>journal // case JP
select j from p in class paper, j in p—>journal // case J

Case PJ will export a list of (paper, journal) tuples and the active list contains papers. Whereas
case JP will export (journal, paper) tuples and the active list will contain journals, and case J will
only export journals and the active list will also contain journals.

2.7 Silent queries

In many situations, one may want to run a query to know the number of objects satisfying the query
without wishing to see the resulting table. As in mathematica and other interactive languages, the
output can be suppressed simply by adding a semi-column at the end of the query.

select ?Person ; // silent query endding with semi—column

Capitalizing on the concept of an active list and on the syntax shortcuts explained in the two
previous sections, the semi-column can be used to chain queries:

select 7Person ; // all persons, silent
select Tom ; // restrict to Tom, silent
select >papers // export papers of author Tom

The result of the first query, in this case the set of all persons, is not exported, but is used as input
to the second query, which selects author Tom, then to the third query. In fine this chained query
exports the list of papers authored by Tom.

The same query can be presented on a single line:

select ?Person ; tom ; >papers // export Tom's papers

3 Filtering on arithmetic and textual conditions

3.1 Comparators

The where clause is used to filter the results. The simplest form is to search for the specific name
of an object

select ?Person Tim

which expands as

select p in class "Person” where p = "Tim" // select a single person

11

Ut R W N = = W N =

[N

The usual comparators: < <= == >= > can act on names, dates and numbers.
In addition, a numeric variable is interpreted as a real number and numerical comparisons can
involve arithmetic: additions, subtractions, multiplications, divisions, modulo, power. Parenthesis
are recognized in the usual way:

select p in ?7Person,
h in p—>height, // assume h is given in meters
w in p—>weight // assume w is given in kilograms
where 2 % (h — 100) < 1.7 = w // select relatively heavy people

In text comparisons, the value of a variable is its name, with the caveat that acedb interprets
embedded numbers as numbers, implying the ordering

a < a7’b < allc < b

String matching comes in 2 flavors. Using the syntax a like b, or equivalently a ~ b, one can
invoke a simple system with 2 kinds of jokers: question mark (?) to represent a single character or
star (*) to represent an arbitrary string.

p = "T?™m" // selects Tam, Tim and Tom,
// but not Attim which does not start with T
p = "Txm" // also selects Theotym,
// but not Thomas which does not end with m
p " AT ?mx" // also selects Attim”
p = "xTsmx" // selects Tam, Tim, Tom, Theotym, Thomas and Attim

Single quotes prevents the expansion of the (*) and (?) symbols

p=— 'x' // select person actually named x

3.2 Regular expressions

Alternatively, one may write a equal-tilde b to invoke the full C regular expression matching

p =" "t[io]m’ // selects Tim, Tom and Attim but not Tam
p =" ""t[io]m’ // selects Tim and Tom,
// but not Attim which does not start with T
p =" "t.xm’ // selects Tam, Tim, Tom, Theotym, Thomas and Attim
p =" "t.xm$’ // rejects Thomas which does not ends with m

The regular expressions must be protected by single quotes to prevent premature evaluation.

3.3 Automatic classification using dynamic subclasses

In most situations, the class of a variable is known from the schema. Requesting paper—>author
would be known in our examples as yielding an author, i.e. an instance of class Person. How-
ever, acedb allows dynamic classification into sub-classes. For example, one can define in acedb a

12

cos W N =

subclass Prolific_author as all authors of at least 5 papers known in the database. Whenever an
Person exceeds this threshold, it belongs at the same time to the class Person and to the subclass
Prolific_author. To get the full list of prolific authors one may directly list the subclass. But it may
be necessary to check the status of a given set of authors, this is done using the operator ISA (is
an instance of a class) as follows

// if Prolific_author is a subclass of class Person one may

select PA in class Prolific_author // list the subclass
// or select objects belonging to a subclass
select A ... // select persons to populate the @ list

select PA from PA in @ where PA ISA Prolific_author // filter

The subsclasses are defined in acedb in the configuration file wspec/subclasses.wrm

3.4 Combining Boolean conditions: AND, OR, XOR and NOT

As in nearly all query systems, conditions can be combined using (OR, XOR, AN D, NOT) in that
order of precedence and parentheses. The names of the operators are not case sensitive: (XOR,
Xor, xor) are equivalent. (OR, XOR, AND, NOT') can be abbreviated as (|| °~ && !). Remember

that the single caret is reserved for arithmetic power 2”3 = 8. For example, one may write

where (a <= x && x <=b) || (b < x && x < a)

to specify that x is either in the segment [a,b] or in the segment |b,a]. However, as discussed below,
missing data and multivalued variables slightly complicate the semantics of the Boolean operators.

3.5 Dealing with missing data: TRUE, FALSE, NULL and NaN

In a standard programming language, like C, it is standard practice to assume that the numerical
value zero matches the Boolean value FALSE. For example a looping instruction while(x) is equiv-
alent to while(z ! = 0). A standard error, however is to evaluate a non initialized value, but this
can be detected at compile time and fixed before running the program. Apart from zero, non-zero
and non initialized values, a 4th type of number occurs in a program, the infamous NaN (Not A
Number), which is generated as the results of an invalid arithmetic operation like 1/0 or log(0).
Unfortunately, these are only detected at run time, and may occur very frequently for example in
Deep Learning programs (a branch of artificial intelligence).

In a database query, it is the rule, rather than the exception, to stumble upon a non initialized
value. Indeed, all fields start empty. For this reason, the logical tests in the query language are not
binary but ternary, the 3 allowed values being TRUE, FALSE and NULL.

Boolean tags, p#tag evaluate as NULL if p is not defined, otherwise as TRUE if the object p
contains the tag, or FALSE if it does not.

13

N g W NN

1

Values, e.g. (p—>weight), evaluate as NULL if undefined, i.e. if the object p is not defined, or
if the tag weight is not present in the object, or if the tag does not point to a value in the object.
Otherwise they evaluate as TRUE even if the value happens to be zero.

In numerical calculations, the NaN value is sticky. Any calculation involving one NaN evalutes
to NaN, for example log(0) + 4. Similarly, any calculation involving a missing data evaluates to
NULL, for example (p —> weight + p —> height) evaluate as NULL if either weight or height is
not specified in the object p.

Any string comparison involving a NULL value (missing data) and any number comparison
involving a NaN or a NULL evaluates to FALSE.

Count operations always evaluate to a valid number.

In Boolean operations (AND, OR, XOR, NOT), NULL and NaN evaluate as FALSE.

This may seem a little abstract, but is easy to understand on examples, and important because,
in a database query, undocumented values are very frequent.

select A from A in ?Person where A // Always true
select A from A in 7Person where A#Professor // Tom is a Professor
select A from A in 7Person where A—>Professor // False, no value
select P from P in 7?Person where P—>weight // Is there a value
select P from P in ?Person where P—>weight > 80 // Check the value
select 1,x from x = (—=1)"0.5 where x // False: not a number
select 1,x from x = (—1)"0.5 where 1 OR x // True: T or NaN =T

Combining the filters, one can for example quality check the data and export all cases where
the values are either missing or out of range, for example a weight shoud never be negative:

select p,w from p in ?Person, w in p—>weight where w <= 0 OR NOT w

3.6 The meaning of NOT in a multivalued universe

In standard arithmetic, the two conditions (a !=b) and !(a == 1), i.e. (a NOT EQUAL b) versus
(NOT (a EQUAL b)), are equivalent, they are FALSE if (¢ == b) and TRUE otherwise. But
in the context of a database query, the situation is more involved. In general, the variables are
multivalued, and the meaning of NOT depends on a choice of strategy. Consider the case of two
papers, pl with authors Tom and Jim, and p2 just with author Tom. We certainly expect Paper
pl to answer TRUE to the query (author == Tom). Therefore it should answer FALSE to the
query (/(Author == Tom)). But what about (Author != Tom). Scanning through the author
list of pl we get 2 answers {TRUE, FALSE} and we need a strategy to reduce this list to a single
answer. We chose to favor TRUE, i.e. the OR value of all individual answers. Therefore pl (but
not p2) answers TRUE to (Author != Tom) because pl has at least one other author.
In conclusion, if the variables are multi-valued, the following queries are not equivalent

select p from p in class Paper where p—>author != Tom

14

2

T W N =

select p from p in class Paper where NOT p—>author = Tom

With our choice of strategy: TRUE wins over FALSE. So in the first case, one find all papers where
Tom is not the only author in the second case one finds all papers where Tom is not an author,.
In addition, according to the previous section discussing missing data, the papers without a known
list of authors are also selected in the second query, but not in the first query.

3.7 Counting elements in embedded subqueries

A very useful constraint is counting. For example, prolific authors can be found by either by
counting the number of values of a tag, or the number of lines of an embedded subquery delimited
by curly brackets {}, i.e. they can be found by the 2 equivalent queries

select a in ?Person where count a—>papers > 5
select a in class author where count {select p in a—>papers} >= 5

but in the latter case, we can become very specific and only count papers published in a given
journal

select a in class "Person” where
count {select p in a—>papers where p—>journal = "nature”} >= 2

4 Basic data types

4.1 Constants and numerical calculations

A constant is declared using the equal symbol. The constant may be a number of a string. These
constants can then be used in calculations and filters

select x, y, z from x =2 , y ="hello”, z=2 % 3 + 4

select L from L in class line , pi = 3.14 where L—>length > 2 % pi / 3
select d from d =2 where d =5 — 3 // correct filter

select d from d =2 where d =5 -3 // error, please use —

As usual in C and many other languages, setting the value of a constant uses the = sign, but
assessing an equality in a where clause uses the == symbol. Looking closely, we may notice that
since all the variables x, y, z, L, d are exported, the select - from is redundant, moreover the x
variable is never reused, so its declaration is redundant. This lead us to the simplified forms:

select x from x =2 // full form
select x = 2 // short form
select 2 // shortest form

15

© 0w N O U R W N

s W NN =

Since the system understands the parenthesis and the standard arithmetic operators (plus,
minus, multiply, divide, power, modulo) we actually have a (multi dimensional) calculator

select (1 +2) « (3—(4+5)) // returns (3) % (—-6) = —18
select 8 modulo 3 // returns 2
select —1 modulo 3 // returns 2 (math convention)
// rather than -1
select 2 % 5 modulo 3 // returns 1
select 9 ~ 2 // returns square(9) =9 x 9 = 81
select 9 " (1/2) // returns sqrt(9) =3
select (-1) © .5 // sqrt(—1)returns NULL, arithmetic exception
select 3%2 , (5+1)/2 // returns 6,3

When computing —1 modulo 3, we prefer the mathematical convention 2 because the C language
convention —1 breaks the periodicity of the modulo function and introduces complications when
translating DNA codon triplets. All numerical calculations are performed using 64-bits floating
numbers (C doubles).

4.2 Loose and strict date comparisons, date differences

Dates are special, because they may be specified with a very variable precision, sometimes just
a year is provided, sometimes down to the second. To allow more meaningful comparisons we
introduce two kinds of comparators, using either the lower or the higher precision.

A constant date is declared by enclosing the numbers using the back-quote sign:

select d = '2016—-01-30_22:47:15"

The successive numbers represent Y:year, M:month (1 to 12), D:day (1 to 31), h:hour (0 to 24),
n:minute (0 to 60) and s:seconds (0 to 60).
In a user provided date, the leading zeroes may be dropped, they are reinstated in the answer:

query :: select d = 2016—-1-17_3:7" // No leading zeroes
answer:: 2016-01-17_03:07 // standardized date format
query :: select d = '20160321" // No minus signs

answer:: 2016—03-21 // standardized date format

In a database, the objects are usually dated with a certain granularity. For example the sub-
mission date of papers often gives the day, but for books, we often only know the year. Also a
frequent query would be to retrieve the papers of a given year or a given month. To satisfy these
needs, we introduce 2 kinds of date comparisons, strict and loose. In a strict comparison, using
the comparators <= == >= the 2 dates are compared at the highest available precision, just
like one would compare real numbers. In the loose mode, using the tilde comparators <=, 7, =~
, >, the 2 dates are compared at the lowest precision, if one date is given in years, the other is
rounded in years. As a result, we have

16

Nl = S

= = e
N o= O

-
w

© W N O s W N =

e
w N = O

‘2016 -2' = ‘2016° /] ——> false

2016—2' >= '2016" /] ——> true
‘2016-2' <= '2016" /] —> false
2016-2' =" '2016" /] ——> true
2016-2' >~ ‘2016 /] ——> true
‘2016-2' <~ '2016" /] ——> true
2016-2' = '2016-2-17' // —> false
2016-2' = '2016—3" /] —> false
2016-2' =" '2016-2-17" // —> true
2016-2' =" ‘2016—3" /| —> false

Notice that a date must always be protected by a pair of back-quotes. This need is obvious if
you want to specify the month, since the date ‘2016-3‘, meaning march 2016, is not the same thing
as the subtraction 2016 — 3 = 2013, but it is also needed even when you just give a year like ‘2013°
to trigger the interpretation of 2013 as a date.

Finally, like in SQL, it is possible to compute a date difference at a desired pecision using
DATEDIFF (unit, date_1, date_2) where unit can be one of (year, month, day, hour, minute,
second), or abbreviated as (y,m,d,h,n,s), notice the n for miNute. The result is an integer number.

In all cases, be very careful when using dates and always check the validity of the query on
a few known cases since it is very easy, when dates are involved, to mean something and write
something else.

4.3 DNA and proteins, motif searches

A specificity of acedb is that it understands the genetic code. If the database contains sequences,
or mRNAs, or any object with a DNA tag, one can obtain its DNA using

select s in class sequence, d in DNA(s)
// yields the full DNA of each sequence in the database.
// To obtain a specific part use
select x =3, y =8, s in ?sequence, d in DNA(s,x,y)
// The reserved word DNA must be written in upper case, this
// allows to use dna as a variable name or to access
// the DNA tag. If x >y, one obtains the reverse complement
select s, dna, adn, from s in 7sequence,
dna in DNA(s,1,6), adn in DNA(s,6,1)
// gives
my_sequence atgttg caacat
// PEPTIDE will translate the sequence
select PEPTIDE (@,1,2)

17

14
15
16
17
18

© 0w N O Uk W N

// gives Methionine—Leucine (atg codes for Met, ttg for Leu)
ML

// To get all proteins encoded in messenger RNA, try
select ?sequence CDS // the CDS tag means the sequence is coding
select —o f ?sequence CDS ; PEPTIDE // all proteins are written to file f

Notice that acedb will translate nuclear DNA using the standard genetic code, but if the relevant
standardized information has been provided in the database, it will translate some sequences using a
different genetic code, for example the human mitochondrial code to translate human mitochondrial
mRNAS.

In principle, one can select all DNA sequences coding for a particulat motif or coding for a
particular peptide motif say MLR or MIR (Methionine (Iso)Leucine aRginine) using simple text
comparison (like) of full UNIX regular expressions (equal tide)

select s,dna from s in class sequence, dna in DNA(s) where dna like ’'sxtaagx'
select s,p from s in class sequence, p in PEPTIDE(s) where p =" ""MJ[IL]R"’

However, the content of the sequences is not indexed, and dedicated tools like BLAT or BLAST
would be much faster for large scale searches of multiple motifs.

5 Column titles and row order

The result of a query is a tab delimited table. The order of the columns is specified by the order of
the variables in the select clause. If the option —title is provided, the first line will start with a #
and contains the title of the columns. The title of the column is just the name of the variable, but
a more complete title can be provided for some columns using the TITLE field (in capitals) as in:

select —title x, y, z from ... where ... TITLE x:this is x, z:this is z

The order of the rows is by default the alpha-numeric ordering. But this order can be modified
using the following syntax.

// By default the lines are sorted alphanumerically
select x, y, z from ... where ... // default order

// The order can be modified using order_by
select x, y, z from ... where ... order_by 14243 // default order

// to order by y increasing, then x decreasing, then z increasing

// these 2 constructions are equivalent
select x, y, z from ... where ... order_by 2-14+3 // use column numbers
select x, y, z from ... where ... order_by y—x+z // use variable names

In the leading column, or the following ones in case of a tie, numbers are sorted numerically : (-5
-2.7-2.6 0 3 7 11 11.1 12) and names are sorted alphabetically. However, we found [I] that it is

18

much nicer to order names containing embedded number numerically as in (a9 b7 b7.1a b11). The
rule is to order numerically on successive groups on contiguous numbers. Notice that this method
also works well for times and dates ’9:20” will come before '10:2’.

6 Conclusion

As from 2018, the official site for the acedb object oriented database system has been transfered
from the Sanger centre to the NCBI. We presented here the new query language developped to
allow a faster and more fluid access to the data, while maintaining a good compatibility with the
previous systems.

The main idea was to clearly define a full fledge syntax while at the same time developing a set of
simplification rules which allow in the simple cases to write very terse queries and let the computer
interpolate the syntactic sugar. This double strategy allows an integrated support for easy to read
verbose scripts and for easy to type terse interactive commands. All queries are analyzed by the
same machinery which interprets the query, checks the syntax, and executes the search in C while
taking advantage of current state of the acedb data caches.

Some aspects of this presentation may be interesting to a broader audience not necesseraly using
the acedb system. For example the implicit handling of multivalued fields is much simpler and more
natural than in relational databases. The ternary logic: True, False, Null presented in section 3.5
is important in any situation where the information is often incomplete. The distinction between
"A not equal B’ and 'not A equal B’, detailled in section 3.6, is critical whenever the variables are
multivalued. The native support for DNA and proteins is handy in biological applications. Finally.
the strict and loose date comparisons of section 4.2 can be appreciated as the cherry on the cake.

Acknowledgments

We would like to thank Sam Cartinhour, Michel Potdevin, Mark Sienkiewicz and Richard Durbin
for many discussion on the best way to query an object oriented database and all acedb users
for a continuous flow of interesting complex queries with unexpected answers. This research was
supported by the Intramural Research Program of the National Library of Medicine, National
Institute of Heath.

References

[1] Richard Durbin and Jean Thierry-Mieg The acedb genome database, Computational Methods
In Genome Research, pages 45-55. Edited by S. Suhai, Plenum Press, New York, 1994

Jean Thierry-Mieg Syntactic Definitions for the ACEDB Database Manager Technical Report:
MRC Lab. for Molecular Biology, 1992

19

© W N O s W N

e e e
Tk W N = O

[2] Lincoln D Stein, Jean Thierry-Mieg Scriptable access to the Caenorhabditis elegans genome
sequence and other ACEDB databases Genome research, 8,12 pp 1308-1315, 1998

[3] Jean Thierry-Mieg, Danielle Thierry-Mieg and Lincoln Stein ACEDB: The Ace Database Man-
ager In Databases and Systems, 2001 DOI: 10.1007/0-306-46903-0_23

[4] Sulston...the C.elegans genome

[5] Danielle Thierry-Mieg and Jean Thierry-Mieg AceView: a comprehensive cDNA-supported
gene and transcripts annotation. Genome Biology 2006, 7(Suppl 1):S12.

[6] Danielle Thierry-Mieg and Jean Thierry-Mieg Magic RNAseq pipeline

[7] Code and documentation are available from
https : | Jwww.aceview.org/So ftware/

A Annex

A.1 List of operators and reserved keywords

To summarize, the full list of operators, in their order of precedence is

order\ _by
from select , where
in =
|| OR °* XOR && AND ! NOT
like =7 7" = l=>=<=> < >7 <~
ISA
+ — % / 7 modulo
class
DNA PEPTIDE DATEDIFF
count
>> > # =
©
object
O {} [
BACKQUOTE QUOTE DOUBLEQUOTE

with the restriction that the 3 kinds of parentheses and also the quotes must be nested correctly
(["bb”]) is correct but (x[y)] is illegal.

A.2 History of the development of the acedb query language

The query syntax described in this document results from the convergence of several developments -
the original acedb query language of 1990, available in the ’query’ box of the acedb graphic interface

20

=W N =

- the table maker system of 1992, with its user friendly graphic interface - the original AQL query
language developed at the Sanger around 2002

The general idea was to learn from the 3 existing systems, conserve the best aspects of each,
fix their limitations and clean up the interface. For example,

— The acedb query language is very terse and expressive, but it is limited to constructing sets
of objects and does not allow to display the content of selected fields.

— The table maker was meant to fix these limitations. Using its rich graphic interface, one can
easily construct a tables involving objects, numbers, texts and even DNA sequences. However,
even a simple tables cannot be constructed on the command line. One need always to construct
the table graphically, to save its definition in a definition file, and run the query using that file.

— The original AQL query language was ment to fix this limitation. AQL defined a command line
syntax, reminiscent of SQL, but adapted to the idiosyncrasies of an object oriented database like
acedb. It made it in principle possible to compose a table on the command line or using a library
call. Unfortunately, the syntax was slightly too rich, encouraging the user to write convoluted
queries, and always verbose. Since there was no graphic interface to help compose a valid query,
and since the original AQL compiler did not explain the eventual errors, it was hard to write a
non-trivial valid query. Finally, AQL execution was slower than table-maker, and lacked access to
DNA and protein sequences.

From the user point of view, the previous interfaces are maintained, but the old style queries are
translated internally and executed by the new query engine. In particular, the graphic table-maker
interface remains valid and can still be used to construct complex queries and most original AQL
queries remain valid. In practice the shortcuts defined in section 2.5 map the terse query language
of the acedb graphic interface, first released in 1990, into a (modification of) the full fledged AQL
queries developed around 2002. As a result, these 2 types of queries, and the table constructed
via the acedb graphic table maker interface, are all expressed in the new unified syntax and the
database exploration can be executed using a single highly optimized query engine.

A.3 Code availability

The acedb source code can be downloaded from

ftp://ftp.ncbi.nlm.nih.gov/repository /ACeDB_NCBI/acedb.source.tar.gz

The tar ball is effectively identical to the distribution of the AceView/Magic pipeline [6] which
uses acedb as the underlying database, and can organize the workflow and manage the meta-data
of tens of thousands of next-generation sequencing runs. The same package underlies the Gene
annotation public web site https://www.ncbi.nlm.nih.gov/AceView [7]

The program is written in C and has very few external dependencies. To compile the code try

tcsh

gunzip —c magic.x.tar.gz | tar xf —
setenv ACEDB_MACHINE LINUX_4_OPT

cd magicx

21

6

[N

make libs tace
make —k all

The code can also compile on the Mac using setenv ACEDB_MACHINE MAC_X_64_OPT or
on any other linux/unix platform. Multiple choices are offered in the directory wmake. The
tace command-line interface presented in the present document should compile without difficulty.
The xace graphic-interface requires the installation of the public X11 development environment as
explained in the README file situated at the top of the acedb distribution.

A test-bench containing examples of queries can be constructed using the command

tcsh wbql/bqltest.tcsh

After running the script, the file ACEDB_QUERY LANGUAGE_TEST /test.out contains the out-
put of the commands contained in test.cmmd and the file test.diff, which contains the differences
between test.out and test.out.expected, should be empty. The database can be examined and
further queries can be tested using the command

binx/tace ACEDB_QUERY_LANGUAGE_TEST

which will activate the command line interface of acedb. All the examples in the present document
can be copied in the interface and should give proper answers. A question mark will invoke the
on-line help and list all the possible commands. In particuler, the acedb command ’show’ will
display the full content of the active objects and will help to understand why they where selected
by the query.

Please try the code and send us feedback.

A.4 Running an acedb session

As explained above, a small test database can be constructed automatically. More generally,
the directory waligner/metadata contains some examples of large acedb schemas. Once you have
constructed a local directory containing an empty sub-directory database and a sub-directory wspec
defining the schema and a data file xxx.ace, you can initialize a database and parse an ace file as
follows:

binx/tace . // launch the compiled text—acebd on the local directory
y // yes, initialize the database

parse myfile.ace // parse some data

save // save the data in compiled binary format

quit

Acedb can be regarded as a data compiler. It can read successively several data files, merge them
and compile them into a compact binary format allowing fast retrieval. Clear messages signal places
in the data file which do not conform to the schema. You can fix the file and reload it. Reading
the same file several times is idempotent, i.e. it does not cause any problem.

22

L I R

© 00 N O U s W N =

e
w N = O

Subclasses are configured in the file wspec/subclasses.wm

Class Prolific_author // The class name must start with a letter
Visible // Make it available in graphic menus
Is_a_subclass_of Person // Inherit from class Person

Filter "COUNT Papers >= 5" // Chosen filter

One can then use the database and ask queries on the command line or import it from a file
using the —¢ parameter or redirect the output to a file using —o

binx/tace . // start the system

select ... from ... where // a query
XX yy zz // the reply comes on stdout
XX yy zz
select —o f.out ... from ... where
// the reply goes in the file f.out
select —a ... // the reply is quote protected (.ace format)
select —i f.bql ... // file f.bql contains the query
select —i f.bgl —s // silent mode
select @ ... // use the new active set
? select // help of the command line parameters
? // list all the acedb commands
quit

In silent mode (with semi column at the end of the query, or using the option -s (-silent)) the
output is suppressed but the active list is modified.

Acedb contains dozens of commands available by typing ? or 7command. There is also a
rich graphic interface, available using the command bin. * /zace., which generates on the fly in
HTML5/SVG language all the plots and diagrams presented on the AceView server [7]. It provides
among other tools a graphic interface helping to compose complex tables. But the description of
the graphic acedb system is out of the scope of this user guide.

The MAGIC pipeline [6] is a good example of a complex system relying on acedb.

A.5 C language API

The acedb system has a C language API. The application code can either be linked into the open-
source database server code, in which case it directly shares the caches of the database engine, or it
can be part of a client code which calls the server via tcp. The interesting point is that exactly the
same code works in both situations, one changes from a server to a client code by simply changing
the library used at link stage. Here is an example of a complete C program invoking the query
language

1 F#include <ac.h> /x acedb C language APl header x/

2
3

int main (int argc, const char xxargv)

23

© 0w N O O s

10
11
12
13
14
15
16
17
18

AC_HANDLE h = ac_new_handle () ;

const char xerrors = 0 ;

const char sdbNameS = "acedb_directory” ; // server case
const char xdbNameC = "t:machine_name: port_number” ; // client case
ACDB db = ac_open_db (dbNameX, &errors); /] X =S5]|C
const char xquery = "select p in class person where p like ax" ;

ACKEYSET aks = 0 ; /x initial keyset, populates the @ symbol x/
AC_TABLE t = ac_bql_table (db, query, aks, errors, h) ;

printf ("Found % lines in the table\n", t—>rows) ;
ac_db_close (db) ;

ac_free (h)
return 0 ;

} /% main x/

The interface is detailled in the self documented header file wh/ac.h.

All comments are welcome.

24

	Introduction
	Presentation of the Query language
	Overview
	Introduction to the acedb schema
	Navigating through the acedb schema
	Multi-valued data cells and transitive closure
	Simplification rules
	Chaining queries using the active list
	Silent queries

	Filtering on arithmetic and textual conditions
	Comparators
	Regular expressions
	Automatic classification using dynamic subclasses
	Combining Boolean conditions: AND, OR, XOR and NOT
	Dealing with missing data: TRUE, FALSE, NULL and NaN
	The meaning of NOT in a multivalued universe
	Counting elements in embedded subqueries

	Basic data types
	Constants and numerical calculations
	Loose and strict date comparisons, date differences
	DNA and proteins, motif searches

	Column titles and row order
	Conclusion
	Annex
	List of operators and reserved keywords
	History of the development of the acedb query language
	Code availability
	Running an acedb session
	C language API

